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1. Introduction

The availability of the complete human genome haaged the way for the systematic
understanding of human diseases. Recent technal@glgances in functional genomics and
proteomics have fueled interest in identifying bhemarkers of complex diseases such as cancer
and neurodegenerative diseases enabling a syseaisahalysis.

Functional genomics describes the use of large stzth produced by high throughput (HTP)
technologies to understand the function of genésodimer parts of the genome. With the help of
high-throughput gene expression technologies,pbssible to analyze the expression of a large
number of sequences in diseased and in normak#s3ine experimental approaches used to
profile gene expression in complex human diseass#gde the representational differential
display and microarrays together with real time QRFfor cross validation. The increasing size
and complexity of the data generated by HTP metipoolgide challenges for researchers to
extract the biologically relevant information. stimportant that microarray technology and
bioinformatics approaches be used in conjunctidiadditate biomarker discovery.
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Fig. 1: A proposed approach to cancer gene discovery fhenCGAP database is shown. Both novel and known
ESTs are identified using multiple data-mining tofsbm this database. Further validation in the labratory
provides a rational for diagnostic and therapetatiget discovery. Adapted from Narayanan, R. (2007)
"Bioinformatics approaches to cancer gene discoVégthods Mol Biol360: 13-31.

An overall strategy for cancer gene discovery bggibioinformatics approaches is shown in
Fig.1. Narayanan and co workers discovered twogasimg data mining approaches with
cancer genome (Narayanan 2007).



Genomics provided the blue print of possible gemelpcts that are the main focus of
proteomics. Proteomics would not be possible witlgamomics. While there are about 30,000
genes in the human genonmet://www.ncbi.nlm.nih.gov/genome/guide/humiariie protein
complement of a cell or tissue, the proteome, ishmarger and is also much more dynamic in
nature. This is because most eukaryotic genes shemative splicing of transcripts leading to
different isoforms of a given protein. This, coupleith post-translational modification such as
glycosylation, myristylation, and phosphorylatiéeads to two or more effectively different
proteins per gene.

Despite the availability of powerful genomics arehscriptomics technologies that are rapid
discovery tools, one important shortcoming of theseroaches is the lack of correlation
between mRNA levels and changes in the proteinesgion. Many different technologies have
been and are still being developed to collect hifi@rmation contained in the proteins. Fig. 2
summarizes the current state of these technolagiésheir relationship to other discovery tools
(Patterson and Aebersold 2003).
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Fig. 2: Current status of proteomic technologies. Adafitech Patterson, S. D. and R. H. Aebersold (2003).
"Proteomics: the first decade and beyond." Nat G&B&uppl: 311-23.

Most proteomics studies start with the fractionaitd clinical samples from a case group and
another set from a control group. Analysis of saap$ carried out by mass spectrometry (MS)
or 2-D gel. The data generated from these analgsmsbjected to data mining approaches for
complex pattern recognition resulting in the disaxgvof a set of biomarkers. A potential
workflow of the proteomics process in biomarkercdigery is shown in Fig.3.
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Fig. 3: Schematic representation of the proteomics psoitesiomarker discovery. Samples from groups are
analyzed using various proteomics technologies.pgBafractionation is followed by analysis with mass
spectrometry which generates millions of data goifihese data points are subjected to preprocesspg. The
processed data is submitted to data mining appesattiat result in a set of biomarkers that aretifileth by data
search algorithms. Finally, the biomarkers arelake for an HTP assay.

This review will critically analyze the recent démgments in bioinformatics and data mining
approaches in proteomics for biomarker discovergoimplex diseases such as cancer and
neurological disorder. Due to space constraint®r’'t be covering candidate proteins in these
diseases. In particular, this review will focusioportant computational concepts and will
outline the procedure for processing of MS datalttain better quality results.

The main aim for investments in the developmergrofeomics is to develop advanced methods
of disease diagnoses, understanding of the diggasesses, and remedies and potential
treatment of the disease at an early stage. Prexg@iression profiling is increasingly being used
to discover, to validate, and to characterize bikes. Targeted and profiling approaches are
being implemented to discover biomarkers. The forapproach targets the selected set of
disease related proteins. Profiling approach isrdnased approach that does not rely on the
prior information on the protein of interest. Retcadvances in mass spectrometry and improved
bioinformatics and statistical tools have revoloiaed the biomarker discovery approach. In
biomarker discovery, much of the efforts have baieected towards the development of
strategies and platforms for quantitative protemwfipng based upon the needs of different types



of biological samples. The biomarker search capdsormed on tissues, on body fluids, or on
cultured cells. Body fluids may include urine, galitears, sweat, and nipple aspirate fluid. The
last may exhibit a lot of variation as comparedeoum and cerebrospinal fluid (CSF). For most
of the neurological disorders serum and CSF aré imsgroteomics or metabolomics analysis.

Techniques used in biomarker discovery include @Delectrophoresis, gel free MS, and

protein array technology. The more widely used aagin, 2-D gel electrophoresis, which
provides the capability to qualitatively and qutatiively resolve complex protein mixtures to
unique spots, is a potential tool for biomarkecdisery (Rai and Chan 2004). Main limitations

of this method are its limited reproducibility apibteins that are expressed at low levels. These
low levels may result in undetectable proteins Whsignificantly limits the application of this
method to clinical samples. The newly improved 2gproach, differential in-gel

electrophoresis (DIGE), has better reproducibaityl throughput (Van den Bergh and Arckens
2005).

Gel-free mass spectrometry based approaches tatkendiscovery include Liquid
Chromatography LC-MS (Wall, Kachman et al. 200Dbufter-transform ion cyclotron
resonance FTICR-MS or LC-FTICR AMT tag approachr{aals, Anderson et al. 2000; Umatr,
Luider et al. 2007), surface-enhanced laser dasofminization SELDI-TOF-MS (Tang,
Tornatore et al. 2004), and matrix-assisted lassoxption/ionization MALDI-TOF-MS (Reyzer
and Caprioli 2005).

Profiling-based approaches are increasingly besagl o discover and validate biomarkers
using MS-based techniques. Most of the MS-basgthtques fopeptide profiling use two
ionization techniques: MALDI and electrospray iatinn (ESI). In MALDI, the mass of the
anylate is estimated by time of the flight (TOFabmzer. MALDI, when coupled with Fourier
transform (FT-MS) enables high sensitivity and higiss accuracy measurements. In ESI
mostly multiple protonated peptides are observdtwraas in MALDI only one protonated
peptide is observed. Different analyzers can bd tmeESI : e.g. TOF, quadrupole, ion trap, and
FTMS. Tryptic peptide profiling is another method to discover biomarkers sincgraafic
digestion significantly improves the resolution dhd sensitivity of mass measurements. Both
MALDI and ESI can be used as ionization technigoestudy differentially expressed proteins
that can be identified from complex protein mixgirBekkeret.al demonstrated the use of
MALADI-TOF-MS for tryptic profiling of CSF sampleBom 106 breast cancer patients and 45
control samples and found 164 differentially expegspeptides (Dekker, Boogerd et al. 2005).
SELDI approach was used to identify ovarian canteerum which engendered enormous
interest in profiling of proteins and peptides odl fluids (Petricoin, Ardekani et al. 2002). This
approach was also applied to CSF for patients matirodegenerative diseases (Lewczuk,
Esselmann et al. 2003; Ruetschi, Zetterberg &0&l5). CSF is a storehouse of naturally
occurring peptide generated from neuropeptidesyiréactors are also analyzed by more
sensitive methods (Selle, Lamerz et al. 2005).



Data pre-processing
a. Background corrections

When exploring MS data, the spectral peaks prodéroed ionization of peptides and proteins
are biologically relevant. A number of steps ameimed in the data pre-processing to detect and
to locate spectral peaks. These include spectaliration, base-line correction, smoothing,
peak identification, intensity normalization, arebi alignment. The most important part of this
process is the reduction and filtering of the ratad Noise in spectra from chemical and
electronic sources produce background signalsitasdmportant to check background
correction before further analysis. Backgroundtilations in MALDI and SELDI-TOF can
create high background with low mass. Satten gtraposed standardization and deionizing
algorithms for background correction (Satten, Dattal. 2004). Local smoothing methods have
been utilized for baseline subtraction to remoghtirequency noise, which may be apparent in
MALDI-MS spectra (Wu, Abbott et al. 2003). Wu et 2003) used a local linear regression
method to estimate the background intensity valaed,then subtracted the fitted values from
the local linear regression result.
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Fig. 4: Data preprocessing example. Left: original ravadRight: mass spectrometry data after baselinecion.
Adapted from Wu, B., T. Abbott, et al. (2003) Bifirmatics19(13): 1636-43.

Malyrenko et.al (2005) computed the response of[HEIOF data to increase in the charge and
applied suitable digital filters for correction (Marenko, Cooke et al. 2005).

b. Peak detection

Once we have the background corrected spectragtktestep is peak detection. Peak detection
helps to reduce the size of the spectral data aadtidies the set of peptides that are
differentially expressed between different samptes.peak detection, peak finding algorithms
are used. Coombes et al. (2003) proposed a mdtlabchtitially uses the peak detection to obtain
a preliminary list of peaks and then a baselir@lsulated by excluding candidate peaks from
the spectrum. The two steps are iterated and sewdesgare further filtered depending on signal-
to-noise ratio (Coombes, Fritsche et al. 2003).tAapalgorithm uses the entire peak to find the



location on spectra by fitting Gaussian distribatio the peak (Kempka, Sjodahl et al. 2004).
For low resolution spectra obtained from MALDI-TQRe peak detection algorithm requires
user input regarding the number of neighboring tsoamd the intensity threshold value. False
positive detections can be avoided by incorporagimge additional constraintdigh resolution
algorithms like  SNAP or THRASH proposed the pickof one isotopic variant of a peptide
peak and treating it as distinct from backgroumghais by analyzing the isotopic distribution
(Horn, Zubarev et al. 2000).

c. Peak alignment

After detecting the peak, the spectrum is aligidiginment algorithms typically involve either:

(i) maximizingsome objective function over a parametric setarfgformationsor (ii)
nonparametric alignment, by waydjfnamic programming (DP), or (iii) some combinatain
thesanethods. Zhang et al. (2005) designed a two-stgpraknt algorithm recognizing peaks
generated by the same peptide but detected inr@iffeamples and addresses systematic
retention time shift. In gross alignment, all pbésisignificant peaks were first identified. A
significant peak refers to a peak that is preseetvery sample and is most intense in certain m/z
and retention-time range (Zhang, Asara et al. 2086¢r gross alignment, microalignment
identifies peaks of the same molecule in diffedatasets. So, gross alignment adjusts the
overall retention time drift between samples, while microalignment focuses on the local
complexity and aligns peaks together. RandolphYasilii (2004) used coarse scale-specific
peaks, extracted byultiscale wavelet decomposition, to align MALDItdalonghe m/z axis.
They used a coarse-to-fine method to first aligakgeat a dominant scale and then refine the
alignment of other peaks at a finer scale. Bud tinclear if the multiscale approach is
biologically reasonable (Randolph and Yasui 200§nhamic programming (DP) based
approaches have also been proposed (Nielsen 198Je microarray, in MS data analysis,
one-to-one correspondence between two data sessndbalways exist. It also remains unclear
how DP can identify and ignore outliers during thatching. Eilers (2004) proposed a
parametric model for the warping function when rilngy chromatograms. The parameters of the
warping function are easily interpolated, allowalggnment of batches of chromatograms based
on warping functions for a limited number of caibon samples a parametric warping model
with polynomial functions or spline functions taga chromatograms (Eilers 2004).

Data normalization

The normalization step helps to reduce variatios tuexperimental noise from systemic effect
between samples, e.g., from varying amounts ofieghprotein, degradation over time in the
sample, or change in the column or sensitivityngtiument. Normalization of MS data can be
performeckither by coercing thevz intensity values to be comparable acegseriments (low-
level processing), or by altering the peak abundmbe comparable (mid-level processing). In
general, one ainte normalize not only replicates, but also expentakdataof distinct

biological origin, such as serum profiles from canpatients and healthy case controls. The
underlying assumptidoehind normalization is that the overall MS aburo#aof all features
(peaks or tima¥/z pairs), or subset(s) of thesbpuld be equal across different experiments
(Listgarten and Emili 2005). Global normalizatiaiars to cases where all features are
simultaneously used to determine a single norntizdactorbetween two experiments, while
local normalization refers ttases where a subset of features are used at &iifeeentsubsets



for different parts of the data). Wang and co-wosk@006) proposed a two-step normalization
procedure. A global normalization is followed bprabability model to investigate the intensity-
dependent missing events and provides possiblditsions for the missing valu€gvang,

Tang et al. 2006). Baggerly et.al (2004) used nbzea intensitiesNV; produced by the SELDI
method. For a single spectruxj,denotes the raw intensity at théh m/z value.Vyin andVimax
denote the smallest and the largest observed itiemns the spectrum, respectively (Baggerly,
Morris et al. 2004). Then the normalized intensiyy is given by

NVI - Vl _Vmin
Vmax _Vmin

Data mining

Datapoints obtained from the data preprocessirgrsigresent potential biomarkers. Many
profiling studies aim to find proteompatterns that can discriminate between differeotoigical
conditions. In order to properly assign statistgighificancdo candidate biomarkers, or any
changes in apparent protailbundance, it is important to understand the pegtef variability.
Before subjecting the data to data mining algorghafieature selection step is used which can
be performed on raw data or the detected peakg usisupervised learning approaches
(approaches do not take into account class labe&dpgous to clustering) or supervised learning
approaches (approaches accounts for class labelegaus to classification) which are
discussed below. Yu et.al implemented a randonstaigorithm to find markers that can best
discriminate cases from control sample (Wu, Abkbtl. 2003; Yu, Wu et al. 2006). Pratapa
et.al compared feature selection with Fisher disicrant ratio (FDR), followed by classification
accuracy of a linear SVM versus joint feature ged@cand classification with Bayesian sparse
multinomial logistic regression (SMLR). The SMLRpapach outperformed FDR and SVM, but
both were effective in achieving good diagnosticusracy with a small number of features
(Pratapa, Patz et al. 2006). Once the featuresedeeted, the data undergoes transformation due
to high variance in a given input variable. Methgddude log transformation, square root
transformation, or linear and logarithmic scaligggin 1999; Anderle, Roy et al. 2004).
Classification trees ignore variance and thereti@esformation is not essential.

Many profiling studies aims to find proteonpatterns that can discriminate between different
biologicalconditions. Data mining is an important elemerdatabases that can be used to
extract the hidden information by supervised orupesvised learning methods.

Unsupervised learning methods

Unsupervised approaches are simplest routine agiptoavisualize the distribution of data.
These approaches include k-means clustering, pahcomponent analysis (PCA), and
hierarchical clustering which can be used a basitchture selection. PCA maps high
dimensional data by creating eigenvalues. Eacladinembination or principal component is a
weighted sum of the amplitude at each m/z value.f€ature selections of PCA are present in
the top principal components which separates thgkss into homogeneous clusters and can be
visualized in 2D or in 3D plots in which the calatdd values for top principal components serve
as x, Yy, and z axes (Duda RO 2000). The PCA appreas used to rank peak intensities within



each spectrum and applied on cervical (HellmaniyAlat al. 2004) and borderline ovarian
cancers (Alaiya, Franzen et al. 2002).

Hierarchical clustering (HC) is another powerfutadeining method for initial exploration of
proteomic data. HC begins by assigning each satapte own cluster. It further calculates
similarity scores or distance matrices between $aamd places samples that are close to each
other. HC algorithms may differ in calculating diste matrices. Two way clustering algorithm
was used to differentiate cancerous from non-causecells and human CSF (Poon, Yip et al.
2003; Hu, Malone et al. 2005; Meunier, Dumas e2@0Q7).

Supervised L earning Approaches

Supervised learning techniques require class laugls that training can occur on data obtained
from a subset of the provided samples. The twosyperariables in this exercise are predictor
variables (intensity at m/z values or peak intgfisind a response variable (disease). The
straight approach to identify the differenced betwévo group would be a t-test using a
supervised method. Unlike Welch t-test, Mann-Whittest assumes equal variance between the
two groups. The t-test has some limitations likechlculating t-statistics for each peak,

Multiple testing can give more number of variablasd these calculations assume that
measurements are independent of each other. Bonifeorrection reduces the impact of
multiple testing procedure (Belknap 1992).

Classification algorithms can be used for featetection and classification. Such algorithms
include genetic algorithms, decision trees, andaleetworks. The aim of genetic algorithms
(GA) is to extract a model by creating chromosowfaaput variables (m/z values) and
iteratively recombining chromosomes and mutatingege More specifically, this mathematical
model relates the protein abundance with the poeseha certain gene. This process
progressively becomes more difficult as the nundieariables grow. Input variables that
satisfy fitness function are kept and the restd@earded through computational evolution. GA
have been used in various MS datasets (Jeffries; Zltadforth, Crowther et al. 2005). Petricoin
et.al used GA and self organizing maps (SOM) amdiegh these to the development of
diagnostic patterns for ovarian and prostrate ganoefind a good set of predictive SELDIz
values (Petricoin, Ornstein et al. 2002)

Decision trees start with the entire sample datasetcreate a decision rule that divides the
entire sample dataset into two homogeneous grduesdecision rule examines the input
variable and partitions the dataset into branclasgd on the less than function. New branch is
then examined for homogeneity and can be subdived@oloying a new rule. Each final node is
labeled as a class using majority rule based otréinang samples. Adaet.al used this
classification technique to an MS dataset of pabdstcancer patients resulting in 96% accuracy,
83% sensitivity, and 97% specificity. Decision sg@oduce interpretable and applicable
decision rules for classifying samples and haven lsed extensively in the analysis of
proteomic data (Geurts, Fillet et al. 2005; Yan@oxXet al. 2005; Albitar, Potts et al. 2006)

Artifical neural networks (ANN) are based on theniae human brain processes information.
Neurons integerate information obtained from déferinputs which could be outside world



(primary level data) or previously integrated datther neurons). Most neural networks feed
forward, i.e., information flow is unidirectionatarting with an input layer flowing through n
layer of neurons and finally to the output. Tragthe neural network involves decreasing the
error rate by adjusting model parameters, i.eigasg) weights to input function, activation
threshold of each neuron, and computation fungtieniormed by each neuron. Due to their low
error rates, artificial neural network algorithnes/k been applied to analyze mass spectra for
cancer and neurodegenerative diseases (Ball, &lian2002; Poon, Yip et al. 2003; Di Luca,
Grossi et al. 2005; Gobel, Vorderwulbedtal. 2006; Ru, Zhu et al. 2006).

Support Vector machines (SVMs) is another macteaening approach which is applied to MS
data analysis. SVMs operate first by distributing sample in n-dimensional space and then by
finding a hyper space that attempts to split treesdrom controls samples (Burges 1998).
Numerous studies have used SVMs for MS data asalysiZhang et al. 2002; Zhang, Bast et
al. 2004; Yu, Zheng et al. 2005). #ial. selected 10z values as features in three SELDI
datasets trying both a t-test filter and a gerstiorithm.These were used in conjunction with an
SVM classifier, wheréhe choice of kernel was reported to have littfecf(Li, Zhang et al.
2002). Wagneet al. used each ok-nearest-neighbok (= 6, Mahalanobidistance), support
vector machine (SVM) with linear kernel (LDA), agdadratic discriminant analysis (QDA) to
classify MALDI data selecting the top 3\N15 peaks as featuresamfstatistic (Wagner, Naik

et al. 2003).

Comparative classifiers: Wai al. compared the performance of LDA, QDAnearesheighbor
(k = 1\N3, Euclidean metric), bagging and boostlagsification trees, SVM (kernel not
specified), and RF odALDI data, using both a t-test rank and the byerct of theRF
algorithm fornm/z feature selection (15 and 25 featur@s)erall, no substantive differences in
performance were reportegith QDA marginally best, although different erestimators
(cross-validation or bootstrap) were used for défe classifiers;omplicating the interpretation
(Wu, Abbott et al. 2003).

Many investigators have analyzed MS data for caandrneurological disorders using the
ProPeak and Ciphergen Peaks 2.1 software combiited/isual analysis (Zhu, Wang et al.
2003; Ranganathan, Williams et al. 2005; Ranganatélliams et al. 2005; Guerreiro, Gomez-
Mancilla et al. 2006; Huang, Leweke et al. 200&Hhan 2006). The software detects biomarker
peaks or features that differentiate spectra ofeaand non-canerous patients.
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Conclusions:

Bioinformatics approaches are critical for effeetiwmining high-dimensional data to provide
insights into disease biology. Data preprocessiraty &is background correction and spectrum
alignment are critical issues before data mininghHlimensional data needs to be reduced to
fewer variables using feature selection. Many @dilyms exist to mine large datasets, but no
specific approach is ideal or applicable to altgtdesigns. For data mining, best approach
would be to utilize feature selection algorithmwitross validation. It is better to utilize
different approaches in parallel to arrive at alfimgorithm. With increasing availability of
public data, rigorous comparisons of data prepsingsand data mining approaches are needed.
Most of the proteomics studies are performed onllgmaulations. It is possible that small
sample size may result in potential biomarkersrigithe validation test. MS is increasingly
being used to analyze complex protein mixturegtognize biomarker patterns. SELDI based
profiling appears to successfully detect some piesty unknown proteins. Also, there is
evidence that biomarker patterns can be foundcratdifferentiate cancerous and normal
individuals. Finally, it is anticipated that exisgi and emerging computational data mining
approaches along with rigorous and systematic atialuwill help to unleash the full biological
potential of proteomiprofiling.
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