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1. Introduction 
 
The availability of the complete human genome has paved the way for the systematic 
understanding of human diseases. Recent technological advances in functional genomics and 
proteomics have fueled interest in identifying  the biomarkers of complex diseases such as cancer 
and neurodegenerative diseases enabling a systems level analysis. 
 
Functional genomics describes the use of large scale data produced by high throughput (HTP) 
technologies to understand the function of genes and other parts of the genome. With the help of 
high-throughput gene expression technologies, it is possible to analyze the expression of a large 
number of sequences in diseased and in normal tissues. The experimental approaches used to 
profile gene expression in complex human diseases include the representational differential 
display and microarrays together with real time Q-PCR for cross validation. The increasing size 
and complexity of the data generated by HTP methods provide challenges for researchers to 
extract the biologically relevant information. It is important that microarray technology and 
bioinformatics approaches be used in conjunction to facilitate biomarker discovery.  
 

            
 
Fig. 1: A proposed approach to cancer gene discovery from the CGAP database is shown. Both novel and known 
ESTs are identified using multiple data-mining tools from this database. Further validation in the wet laboratory 
provides a rational for diagnostic and therapeutic target discovery. Adapted from Narayanan, R. (2007). 
"Bioinformatics approaches to cancer gene discovery." Methods Mol Biol 360: 13-31. 
 
An overall strategy for cancer gene discovery by using bioinformatics approaches is shown in 
Fig.1. Narayanan and co workers discovered two genes using data mining  approaches with 
cancer genome (Narayanan 2007). 
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Genomics provided the blue print of possible gene products that are the main focus of 
proteomics. Proteomics would not be possible without genomics. While there are about 30,000 
genes in the human genome (http://www.ncbi.nlm.nih.gov/genome/guide/human/), the protein 
complement of a cell or tissue, the proteome, is much larger and is also much more dynamic in 
nature. This is because most eukaryotic genes show alternative splicing of transcripts leading to 
different isoforms of a given protein. This, coupled with post-translational modification such as 
glycosylation, myristylation, and phosphorylation, leads to two or more effectively different 
proteins per gene. 
 
Despite the availability of powerful genomics and transcriptomics technologies that are rapid 
discovery tools, one important shortcoming of these approaches is the lack of correlation 
between mRNA levels and changes in the protein expression. Many different technologies have 
been and are still being developed to collect the information contained in the proteins. Fig. 2 
summarizes the current state of these technologies and their relationship to other discovery tools 
(Patterson and Aebersold 2003). 
 

 
 
Fig. 2: Current status of proteomic technologies. Adapted from Patterson, S. D. and R. H. Aebersold (2003). 
"Proteomics: the first decade and beyond." Nat Genet 33 Suppl: 311-23. 
 
Most proteomics studies start with the fractionation of clinical samples from a case group and 
another set from a control group. Analysis of samples is carried out by mass spectrometry (MS) 
or 2-D gel. The data generated from these analyses is subjected to data mining approaches for 
complex pattern recognition resulting in the discovery of a set of biomarkers. A potential 
workflow of the proteomics process in biomarker discovery is shown in Fig.3. 
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Fig. 3: Schematic representation of the proteomics process in biomarker discovery. Samples from groups are 
analyzed using various proteomics technologies. Sample fractionation is followed by analysis with mass 
spectrometry which generates millions of data points. These data points are subjected to preprocessing steps. The 
processed data is submitted to data mining approaches that result in a set of biomarkers that are identified by data 
search algorithms. Finally, the biomarkers are available for an HTP assay. 
 
This review will critically analyze the recent developments in bioinformatics and data mining 
approaches in proteomics for biomarker discovery in complex diseases such as cancer and 
neurological disorder. Due to space constraints, I won’t be covering candidate proteins in these 
diseases. In particular, this review will focus on important computational concepts and will 
outline the procedure for processing of MS data to obtain better quality results. 
 
The main aim for investments in the development of proteomics is to develop advanced methods 
of disease diagnoses, understanding of the disease processes, and remedies and potential 
treatment of the disease at an early stage. Protein expression profiling is increasingly being used 
to discover, to validate, and to characterize biomarkers. Targeted and profiling approaches are 
being implemented to discover biomarkers. The former approach targets the selected set of 
disease related proteins. Profiling approach is an unbiased approach that does not rely on the 
prior information on the protein of interest. Recent advances in mass spectrometry and improved 
bioinformatics and statistical tools have revolutionized the biomarker discovery approach. In 
biomarker discovery, much of the efforts have been directed towards the development of 
strategies and platforms for quantitative protein profiling based upon the needs of different types 
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of biological samples. The biomarker search can be performed on tissues, on body fluids, or on 
cultured cells. Body fluids may include urine, saliva, tears, sweat, and nipple aspirate fluid.  The 
last may exhibit a lot of variation as compared to serum and cerebrospinal fluid (CSF). For most 
of the neurological disorders serum and CSF are used for proteomics or metabolomics analysis.  
 
Techniques used in biomarker discovery include 2-D gel electrophoresis, gel free MS, and 
protein array technology. The more widely used approach, 2-D gel electrophoresis, which 
provides the capability to qualitatively and quantitatively resolve complex protein mixtures to 
unique spots, is a potential tool for biomarker discovery (Rai and Chan 2004). Main limitations 
of this method are its limited reproducibility and proteins that are expressed at low levels.  These 
low levels may result in undetectable proteins which significantly limits the application of this 
method to clinical samples. The newly improved 2-D approach, differential in-gel 
electrophoresis (DIGE), has better reproducibility and throughput (Van den Bergh and Arckens 
2005).  
 
Gel-free mass spectrometry based approaches to biomarker discovery include Liquid 
Chromatography LC-MS (Wall, Kachman et al. 2001), Fourier-transform ion cyclotron 
resonance FTICR-MS or LC-FTICR AMT tag approach (Conrads, Anderson et al. 2000; Umar, 
Luider et al. 2007), surface-enhanced laser desorption/ionization SELDI-TOF-MS (Tang, 
Tornatore et al. 2004), and matrix-assisted laser desorption/ionization MALDI-TOF-MS (Reyzer 
and Caprioli 2005).  
 
Profiling-based approaches are increasingly being used to discover and validate biomarkers 
using MS-based techniques.  Most of the MS-based techniques for peptide profiling use two 
ionization techniques: MALDI and electrospray ionization (ESI). In MALDI, the mass of the 
anylate is estimated by time of the flight (TOF) analyzer. MALDI, when coupled with Fourier 
transform (FT-MS) enables high sensitivity and high mass accuracy measurements. In ESI 
mostly multiple protonated peptides are observed, whereas in MALDI only one protonated 
peptide is observed. Different analyzers can be used for ESI : e.g. TOF, quadrupole, ion trap, and 
FTMS.  Tryptic peptide profiling is another method to discover biomarkers since enzymatic 
digestion significantly improves the resolution and the sensitivity of mass measurements. Both 
MALDI and ESI can be used as ionization techniques to study differentially expressed proteins 
that can be identified from complex protein mixtures. Dekker et.al demonstrated the use of 
MALADI-TOF-MS for tryptic profiling of CSF samples from 106 breast cancer patients and 45 
control samples and found 164 differentially expressed peptides (Dekker, Boogerd et al. 2005). 
SELDI approach was used to identify ovarian cancer in serum which engendered enormous 
interest in profiling of proteins and peptides in body fluids (Petricoin, Ardekani et al. 2002). This 
approach was also applied to CSF for patients with neurodegenerative diseases (Lewczuk, 
Esselmann et al. 2003; Ruetschi, Zetterberg et al. 2005). CSF is a storehouse of naturally 
occurring peptide generated from neuropeptides; growth factors are also analyzed by more 
sensitive methods (Selle, Lamerz et al. 2005). 
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Data pre-processing 
 
a. Background corrections 
 
When exploring MS data, the spectral peaks produced from ionization of peptides and proteins 
are biologically relevant. A number of steps are involved in the data pre-processing to detect and 
to locate spectral peaks.  These include spectrum calibration, base-line correction, smoothing, 
peak identification, intensity normalization, and peak alignment. The most important part of this 
process is the reduction and filtering of the raw data. Noise in spectra from chemical and 
electronic sources produce background signals, and it is important to check background 
correction before further analysis. Background fluctuations in MALDI and SELDI-TOF can 
create high background with low mass. Satten et al. proposed standardization and deionizing 
algorithms for background correction (Satten, Datta et al. 2004). Local smoothing methods have 
been utilized for baseline subtraction to remove high frequency noise, which may be apparent in 
MALDI-MS spectra (Wu, Abbott et al. 2003). Wu et al. (2003) used a local linear regression 
method to estimate the background intensity values, and then subtracted the fitted values from 
the local linear regression result. 
 

   
Fig. 4: Data preprocessing example. Left: original raw data. Right: mass spectrometry data after baseline correction. 
Adapted from Wu, B., T. Abbott, et al. (2003) Bioinformatics 19(13): 1636-43. 
 
Malyrenko et.al (2005) computed the response of SELDI-TOF data to increase in the charge and 
applied suitable digital filters for correction (Malyarenko, Cooke et al. 2005).  
 
b. Peak detection 
 
Once we have the background corrected spectra, the next step is peak detection. Peak detection 
helps to reduce the size of the spectral data and quantifies the set of peptides that are 
differentially expressed between different samples. For peak detection, peak finding algorithms 
are used. Coombes et al. (2003) proposed a method that initially uses the peak detection to obtain 
a preliminary list of peaks and then a baseline is calculated by excluding candidate peaks from 
the spectrum. The two steps are iterated and some peaks are further filtered depending on signal-
to-noise ratio (Coombes, Fritsche et al. 2003). Another algorithm uses the entire peak to find the 
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location on spectra by fitting Gaussian distribution to the peak (Kempka, Sjodahl et al. 2004). 
For low resolution spectra obtained from MALDI-TOF, the peak detection algorithm requires 
user input regarding the number of neighboring points and the intensity threshold value. False 
positive detections can be avoided by incorporating some additional constraints. High resolution 
algorithms like  SNAP or THRASH proposed the picking of one isotopic variant of a peptide 
peak and treating it as distinct from background signals by analyzing the isotopic distribution 
(Horn, Zubarev et al. 2000). 
 
c. Peak alignment  
 
After detecting the peak, the spectrum is aligned. Alignment algorithms typically involve either: 
(i) maximizing some objective function over a parametric set of transformations, or (ii) 
nonparametric alignment, by way of dynamic programming (DP), or (iii) some combination of 
these methods. Zhang et al. (2005) designed a two-step alignment algorithm recognizing peaks 
generated by the same peptide but detected in different samples and addresses systematic 
retention time shift. In gross alignment, all possible significant peaks were first identified. A 
significant peak refers to a peak that is present in every sample and is most intense in certain m/z 
and retention-time range (Zhang, Asara et al. 2005). After gross alignment, microalignment 
identifies peaks of the same molecule in different datasets. So, gross alignment adjusts the 
overall retention time drift between samples, while the microalignment focuses on the local 
complexity and aligns peaks together. Randolph and Yasui (2004) used coarse scale-specific 
peaks, extracted by multiscale wavelet decomposition, to align MALDI data along the m/z axis. 
They used a coarse-to-fine method to first align peaks at a dominant scale and then refine the 
alignment of other peaks at a finer scale. But it is unclear if the multiscale approach is 
biologically reasonable (Randolph and Yasui 2006). Dynamic programming (DP) based 
approaches have also been proposed (Nielsen 1998). Unlike microarray, in MS data analysis, 
one-to-one correspondence between two data sets does not always exist.  It also remains unclear 
how DP can identify and ignore outliers during the matching. Eilers (2004) proposed a 
parametric model for the warping function when aligning chromatograms. The parameters of the 
warping function are easily interpolated, allowing alignment of batches of chromatograms based 
on warping functions for a limited number of calibration samples a parametric warping model 
with polynomial functions or spline functions to align chromatograms (Eilers 2004). 
 
Data normalization 
 
The normalization step helps to reduce variation due to experimental noise from systemic effect 
between samples, e.g., from varying amounts of applied protein, degradation over time in the 
sample, or change in the column or sensitivity of instrument. Normalization of MS data can be 
performed either by coercing the m/z intensity values to be comparable across experiments (low-
level processing), or by altering the peak abundance to be comparable (mid-level processing). In 
general, one aims to normalize not only replicates, but also experimental data of distinct 
biological origin, such as serum profiles from cancer patients and healthy case controls. The 
underlying assumption behind normalization is that the overall MS abundance of all features 
(peaks or time-m/z pairs), or subset(s) of these, should be equal across different experiments  
(Listgarten and Emili 2005). Global normalization refers to cases where all features are 

simultaneously used to determine a single normalization factor between two experiments, while 
local normalization refers to cases where a subset of features are used at a time (different subsets 
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for different parts of the data). Wang and co-workers (2006) proposed a two-step normalization 
procedure. A global normalization is followed by a probability model to investigate the intensity-
dependent missing events and provides possible substitutions for the missing values (Wang, 
Tang et al. 2006). Baggerly et.al (2004) used normalized intensities NVi produced by the SELDI 
method. For a single spectrum, Vi denotes the raw intensity at the i-th m/z value. Vmin and Vmax 
denote the smallest and the largest observed intensities in the spectrum, respectively (Baggerly, 
Morris et al. 2004). Then the normalized intensity NVi is given by 
 

minmax

min

VV

VV
NV i

i −
−=  

 
Data mining 
 
Datapoints obtained from the data preprocessing step represent potential biomarkers. Many 
profiling studies aim to find proteomic patterns that can discriminate between different biological 

conditions. In order to properly assign statistical significance to candidate biomarkers, or any 
changes in apparent protein abundance, it is important to understand the patterns of variability.  
Before subjecting the data to data mining algorithms, a feature selection step is used which can 
be performed on raw data or the detected peaks using unsupervised learning approaches 
(approaches do not take into account class labels; analogous to clustering) or supervised learning 
approaches (approaches accounts for class labels; analogous to classification) which are 
discussed below. Yu et.al implemented a random forest algorithm to find markers that can best 
discriminate cases from control sample (Wu, Abbott et al. 2003; Yu, Wu et al. 2006). Pratapa 
et.al compared feature selection with Fisher discriminant ratio (FDR), followed by classification 
accuracy of a linear SVM versus joint feature selection and classification with Bayesian sparse 
multinomial logistic regression (SMLR). The SMLR approach outperformed FDR and SVM, but 
both were effective in achieving good diagnostic accuracy with a small number of features 
(Pratapa, Patz et al. 2006). Once the features are selected, the data undergoes transformation due 
to high variance in a given input variable. Methods include log transformation, square root 
transformation, or linear and logarithmic scaling (Stein 1999; Anderle, Roy et al. 2004). 
Classification trees ignore variance and therefore transformation is not essential. 
 
Many profiling studies aims to find proteomic patterns that can discriminate between different 
biological conditions. Data mining is an important element in databases that can be used to 
extract the hidden information by supervised or unsupervised learning methods. 
 
Unsupervised learning methods 
 
Unsupervised approaches are simplest routine approach to visualize the distribution of data. 
These approaches include k-means clustering, principal component analysis (PCA), and 
hierarchical clustering which can be used a basis for feature selection.  PCA maps high 
dimensional data by creating eigenvalues. Each linear combination or principal component is a 
weighted sum of the amplitude at each m/z value. The feature selections of PCA are present in 
the top principal components which separates the samples into homogeneous clusters and can be 
visualized in 2D or in 3D plots in which the calculated values for top principal components serve 
as x, y, and z axes (Duda RO 2000). The PCA approach was used to rank peak intensities within 



 9 

each spectrum and applied on cervical (Hellman, Alaiya et al. 2004) and borderline ovarian 
cancers (Alaiya, Franzen et al. 2002). 
 
Hierarchical clustering (HC) is another powerful data mining method for initial exploration of 
proteomic data. HC begins by assigning each sample to its own cluster. It further calculates 
similarity scores or distance matrices between sample and places samples that are close to each 
other. HC algorithms may differ in calculating distance matrices. Two way clustering algorithm 
was used to differentiate cancerous from non-cancerous cells and human CSF (Poon, Yip et al. 
2003; Hu, Malone et al. 2005; Meunier, Dumas et al. 2007). 
 
Supervised Learning Approaches 
 
Supervised learning techniques require class labels such that training can occur on data obtained 
from a subset of the provided samples. The two types of variables in this exercise are predictor 
variables (intensity at m/z values or peak intensity) and a response variable (disease). The 
straight approach to identify the differenced between two group would be a t-test using a 
supervised method. Unlike Welch t-test, Mann-Whitney test assumes equal variance between the 
two groups. The t-test has some limitations like by calculating t-statistics  for each peak, 
Multiple testing can give more number of variables, and these calculations assume that 
measurements are  independent of each other. Bonferroni correction reduces the impact of 
multiple testing procedure (Belknap 1992).  
 
Classification algorithms can be used for feature selection and classification. Such algorithms 
include genetic algorithms, decision trees, and neural networks. The aim of genetic algorithms 
(GA) is to extract a model by creating chromosomes of input variables (m/z values) and 
iteratively recombining chromosomes and mutating genes. More specifically, this mathematical 
model relates the protein abundance with the presence of a certain gene. This process 
progressively becomes more difficult as the number of variables grow. Input variables that 
satisfy fitness function are kept and the rest are discarded through computational evolution. GA 
have been used in various MS datasets (Jeffries 2004; Shadforth, Crowther et al. 2005). Petricoin 
et.al used GA and self organizing maps (SOM) and applied these to the development of 
diagnostic patterns for ovarian and prostrate cancers to find a good set of predictive SELDI m/z 
values (Petricoin, Ornstein et al. 2002). 
 
Decision trees start with the entire sample dataset and create a decision rule that divides the 
entire sample dataset into two homogeneous groups. The decision rule examines the input 
variable and partitions the dataset into branches based on the less than function. New branch is 
then examined for homogeneity and can be subdivided employing a new rule. Each final node is 
labeled as a class using majority rule based on the training samples. Adam et.al used this 
classification technique to an MS dataset of prostrate cancer patients resulting in 96% accuracy, 
83% sensitivity, and 97% specificity. Decision trees produce interpretable and applicable 
decision rules for classifying samples and have been used extensively in the analysis of 
proteomic data (Geurts, Fillet et al. 2005; Yang, Xiao et al. 2005; Albitar, Potts et al. 2006) 
 
Artifical neural networks (ANN) are based on the way the human brain processes information. 
Neurons integerate information obtained from different inputs which could be outside world 
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(primary level data) or previously integrated data (other neurons). Most neural networks feed 
forward, i.e., information flow is unidirectional, starting with an input layer flowing through n 
layer of neurons and finally to the output. Training the neural network involves decreasing the 
error rate by adjusting model parameters, i.e., assigning weights to input function, activation 
threshold of each neuron, and computation function performed by each neuron. Due to their low 
error rates, artificial neural network algorithms have been applied to analyze mass spectra for 
cancer and neurodegenerative diseases (Ball, Mian et al. 2002; Poon, Yip et al. 2003; Di Luca, 
Grossi et al. 2005; Gobel, Vorderwulbecke et al. 2006; Ru, Zhu et al. 2006). 
 
Support Vector machines (SVMs) is another machine learning approach which is applied to MS 
data analysis. SVMs operate first by distributing the sample  in n-dimensional space and then by 
finding a hyper space that attempts to split the cases from controls samples (Burges 1998).  
Numerous studies have used SVMs for MS data analysis (Li, Zhang et al. 2002; Zhang, Bast et 
al. 2004; Yu, Zheng et al. 2005). Li et al. selected 10 m/z values as features in three SELDI 

datasets trying both a t-test filter and a genetic algorithm. These were used in conjunction with an 
SVM classifier, where the choice of kernel was reported to have little effect (Li, Zhang et al. 
2002). Wagner et al. used each of: k-nearest-neighbor (k = 6, Mahalanobis distance), support 
vector machine (SVM) with linear kernel (LDA), and quadratic discriminant analysis (QDA) to 
classify MALDI data selecting the top 3\N15 peaks as features with an F statistic (Wagner, Naik 
et al. 2003). 
 
Comparative classifiers: Wu et al. compared the performance of LDA, QDA, k-nearest neighbor 
(k = 1\N3, Euclidean metric), bagging and boosting classification trees, SVM (kernel not 
specified), and RF on MALDI data, using both a t-test rank and the by-product of the RF 
algorithm for m/z feature selection (15 and 25 features). Overall, no substantive differences in 
performance were reported, with QDA marginally best, although different error estimators 

(cross-validation or bootstrap) were used for different classifiers, complicating the interpretation 
(Wu, Abbott et al. 2003). 
 
Many investigators have analyzed MS data for cancer and neurological disorders using the 
ProPeak and Ciphergen Peaks 2.1 software combined with visual analysis (Zhu, Wang et al. 
2003; Ranganathan, Williams et al. 2005; Ranganathan, Williams et al. 2005; Guerreiro, Gomez-
Mancilla et al. 2006; Huang, Leweke et al. 2006; Lakhan 2006). The software detects biomarker 
peaks or features that differentiate spectra of cancer and non-canerous patients. 
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Conclusions: 
 
Bioinformatics approaches are critical for effectively mining high-dimensional data to provide 
insights into disease biology. Data preprocessing such as background correction and spectrum 
alignment are critical issues before data mining. High dimensional data needs to be reduced to 
fewer variables using feature selection.  Many algorithms exist to mine large datasets, but no 
specific approach is ideal or applicable to all study designs. For data mining, best approach 
would be to utilize feature selection algorithm with cross validation. It is better to utilize 
different approaches in parallel to arrive at a final algorithm. With increasing availability of 
public data, rigorous comparisons of data preprocessing and data mining approaches are needed.  
Most of the proteomics studies are performed on small populations. It is possible that small 
sample size may result in potential biomarkers failing the validation test.  MS is increasingly 
being used to analyze complex protein mixtures to recognize biomarker patterns. SELDI based 
profiling appears to successfully detect some previously unknown proteins. Also, there is 
evidence that biomarker patterns can be found that can differentiate cancerous and normal 
individuals. Finally, it is anticipated that existing and emerging computational data mining   

approaches along with rigorous and systematic evaluation, will help to unleash the full biological 
potential of proteomic profiling. 
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